3.351 \(\int \frac{\sec (c+d x) (B \sec (c+d x)+C \sec ^2(c+d x))}{(a+a \sec (c+d x))^3} \, dx\)

Optimal. Leaf size=102 \[ \frac{(3 B+7 C) \tan (c+d x)}{15 d \left (a^3 \sec (c+d x)+a^3\right )}+\frac{(3 B-8 C) \tan (c+d x)}{15 a d (a \sec (c+d x)+a)^2}-\frac{(B-C) \tan (c+d x)}{5 d (a \sec (c+d x)+a)^3} \]

[Out]

-((B - C)*Tan[c + d*x])/(5*d*(a + a*Sec[c + d*x])^3) + ((3*B - 8*C)*Tan[c + d*x])/(15*a*d*(a + a*Sec[c + d*x])
^2) + ((3*B + 7*C)*Tan[c + d*x])/(15*d*(a^3 + a^3*Sec[c + d*x]))

________________________________________________________________________________________

Rubi [A]  time = 0.250912, antiderivative size = 102, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 4, integrand size = 38, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.105, Rules used = {4072, 4008, 4000, 3794} \[ \frac{(3 B+7 C) \tan (c+d x)}{15 d \left (a^3 \sec (c+d x)+a^3\right )}+\frac{(3 B-8 C) \tan (c+d x)}{15 a d (a \sec (c+d x)+a)^2}-\frac{(B-C) \tan (c+d x)}{5 d (a \sec (c+d x)+a)^3} \]

Antiderivative was successfully verified.

[In]

Int[(Sec[c + d*x]*(B*Sec[c + d*x] + C*Sec[c + d*x]^2))/(a + a*Sec[c + d*x])^3,x]

[Out]

-((B - C)*Tan[c + d*x])/(5*d*(a + a*Sec[c + d*x])^3) + ((3*B - 8*C)*Tan[c + d*x])/(15*a*d*(a + a*Sec[c + d*x])
^2) + ((3*B + 7*C)*Tan[c + d*x])/(15*d*(a^3 + a^3*Sec[c + d*x]))

Rule 4072

Int[((a_.) + csc[(e_.) + (f_.)*(x_)]*(b_.))^(m_.)*((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(
x_)]^2*(C_.))*((c_.) + csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_.), x_Symbol] :> Dist[1/b^2, Int[(a + b*Csc[e + f*x])
^(m + 1)*(c + d*Csc[e + f*x])^n*(b*B - a*C + b*C*Csc[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C, m,
 n}, x] && EqQ[A*b^2 - a*b*B + a^2*C, 0]

Rule 4008

Int[csc[(e_.) + (f_.)*(x_)]^2*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_
)), x_Symbol] :> -Simp[((A*b - a*B)*Cot[e + f*x]*(a + b*Csc[e + f*x])^m)/(b*f*(2*m + 1)), x] + Dist[1/(b^2*(2*
m + 1)), Int[Csc[e + f*x]*(a + b*Csc[e + f*x])^(m + 1)*Simp[A*b*m - a*B*m + b*B*(2*m + 1)*Csc[e + f*x], x], x]
, x] /; FreeQ[{a, b, e, f, A, B}, x] && NeQ[A*b - a*B, 0] && EqQ[a^2 - b^2, 0] && LtQ[m, -2^(-1)]

Rule 4000

Int[csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_))
, x_Symbol] :> Simp[((A*b - a*B)*Cot[e + f*x]*(a + b*Csc[e + f*x])^m)/(a*f*(2*m + 1)), x] + Dist[(a*B*m + A*b*
(m + 1))/(a*b*(2*m + 1)), Int[Csc[e + f*x]*(a + b*Csc[e + f*x])^(m + 1), x], x] /; FreeQ[{a, b, A, B, e, f}, x
] && NeQ[A*b - a*B, 0] && EqQ[a^2 - b^2, 0] && NeQ[a*B*m + A*b*(m + 1), 0] && LtQ[m, -2^(-1)]

Rule 3794

Int[csc[(e_.) + (f_.)*(x_)]/(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)), x_Symbol] :> -Simp[Cot[e + f*x]/(f*(b + a*
Csc[e + f*x])), x] /; FreeQ[{a, b, e, f}, x] && EqQ[a^2 - b^2, 0]

Rubi steps

\begin{align*} \int \frac{\sec (c+d x) \left (B \sec (c+d x)+C \sec ^2(c+d x)\right )}{(a+a \sec (c+d x))^3} \, dx &=\int \frac{\sec ^2(c+d x) (B+C \sec (c+d x))}{(a+a \sec (c+d x))^3} \, dx\\ &=-\frac{(B-C) \tan (c+d x)}{5 d (a+a \sec (c+d x))^3}-\frac{\int \frac{\sec (c+d x) (-3 a (B-C)-5 a C \sec (c+d x))}{(a+a \sec (c+d x))^2} \, dx}{5 a^2}\\ &=-\frac{(B-C) \tan (c+d x)}{5 d (a+a \sec (c+d x))^3}+\frac{(3 B-8 C) \tan (c+d x)}{15 a d (a+a \sec (c+d x))^2}+\frac{(3 B+7 C) \int \frac{\sec (c+d x)}{a+a \sec (c+d x)} \, dx}{15 a^2}\\ &=-\frac{(B-C) \tan (c+d x)}{5 d (a+a \sec (c+d x))^3}+\frac{(3 B-8 C) \tan (c+d x)}{15 a d (a+a \sec (c+d x))^2}+\frac{(3 B+7 C) \tan (c+d x)}{15 d \left (a^3+a^3 \sec (c+d x)\right )}\\ \end{align*}

Mathematica [A]  time = 0.171977, size = 70, normalized size = 0.69 \[ \frac{\tan \left (\frac{1}{2} (c+d x)\right ) \sec ^4\left (\frac{1}{2} (c+d x)\right ) (6 (3 B+2 C) \cos (c+d x)+(3 B+2 C) \cos (2 (c+d x))+9 B+16 C)}{120 a^3 d} \]

Antiderivative was successfully verified.

[In]

Integrate[(Sec[c + d*x]*(B*Sec[c + d*x] + C*Sec[c + d*x]^2))/(a + a*Sec[c + d*x])^3,x]

[Out]

((9*B + 16*C + 6*(3*B + 2*C)*Cos[c + d*x] + (3*B + 2*C)*Cos[2*(c + d*x)])*Sec[(c + d*x)/2]^4*Tan[(c + d*x)/2])
/(120*a^3*d)

________________________________________________________________________________________

Maple [A]  time = 0.053, size = 64, normalized size = 0.6 \begin{align*}{\frac{1}{4\,d{a}^{3}} \left ({\frac{-B+C}{5} \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{5}}+{\frac{2\,C}{3} \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{3}}+C\tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) +B\tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sec(d*x+c)*(B*sec(d*x+c)+C*sec(d*x+c)^2)/(a+a*sec(d*x+c))^3,x)

[Out]

1/4/d/a^3*(1/5*(-B+C)*tan(1/2*d*x+1/2*c)^5+2/3*C*tan(1/2*d*x+1/2*c)^3+C*tan(1/2*d*x+1/2*c)+B*tan(1/2*d*x+1/2*c
))

________________________________________________________________________________________

Maxima [A]  time = 0.959214, size = 155, normalized size = 1.52 \begin{align*} \frac{\frac{C{\left (\frac{15 \, \sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} + \frac{10 \, \sin \left (d x + c\right )^{3}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{3}} + \frac{3 \, \sin \left (d x + c\right )^{5}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{5}}\right )}}{a^{3}} + \frac{3 \, B{\left (\frac{5 \, \sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} - \frac{\sin \left (d x + c\right )^{5}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{5}}\right )}}{a^{3}}}{60 \, d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)*(B*sec(d*x+c)+C*sec(d*x+c)^2)/(a+a*sec(d*x+c))^3,x, algorithm="maxima")

[Out]

1/60*(C*(15*sin(d*x + c)/(cos(d*x + c) + 1) + 10*sin(d*x + c)^3/(cos(d*x + c) + 1)^3 + 3*sin(d*x + c)^5/(cos(d
*x + c) + 1)^5)/a^3 + 3*B*(5*sin(d*x + c)/(cos(d*x + c) + 1) - sin(d*x + c)^5/(cos(d*x + c) + 1)^5)/a^3)/d

________________________________________________________________________________________

Fricas [A]  time = 0.460994, size = 227, normalized size = 2.23 \begin{align*} \frac{{\left ({\left (3 \, B + 2 \, C\right )} \cos \left (d x + c\right )^{2} + 3 \,{\left (3 \, B + 2 \, C\right )} \cos \left (d x + c\right ) + 3 \, B + 7 \, C\right )} \sin \left (d x + c\right )}{15 \,{\left (a^{3} d \cos \left (d x + c\right )^{3} + 3 \, a^{3} d \cos \left (d x + c\right )^{2} + 3 \, a^{3} d \cos \left (d x + c\right ) + a^{3} d\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)*(B*sec(d*x+c)+C*sec(d*x+c)^2)/(a+a*sec(d*x+c))^3,x, algorithm="fricas")

[Out]

1/15*((3*B + 2*C)*cos(d*x + c)^2 + 3*(3*B + 2*C)*cos(d*x + c) + 3*B + 7*C)*sin(d*x + c)/(a^3*d*cos(d*x + c)^3
+ 3*a^3*d*cos(d*x + c)^2 + 3*a^3*d*cos(d*x + c) + a^3*d)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \frac{\int \frac{B \sec ^{2}{\left (c + d x \right )}}{\sec ^{3}{\left (c + d x \right )} + 3 \sec ^{2}{\left (c + d x \right )} + 3 \sec{\left (c + d x \right )} + 1}\, dx + \int \frac{C \sec ^{3}{\left (c + d x \right )}}{\sec ^{3}{\left (c + d x \right )} + 3 \sec ^{2}{\left (c + d x \right )} + 3 \sec{\left (c + d x \right )} + 1}\, dx}{a^{3}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)*(B*sec(d*x+c)+C*sec(d*x+c)**2)/(a+a*sec(d*x+c))**3,x)

[Out]

(Integral(B*sec(c + d*x)**2/(sec(c + d*x)**3 + 3*sec(c + d*x)**2 + 3*sec(c + d*x) + 1), x) + Integral(C*sec(c
+ d*x)**3/(sec(c + d*x)**3 + 3*sec(c + d*x)**2 + 3*sec(c + d*x) + 1), x))/a**3

________________________________________________________________________________________

Giac [A]  time = 1.17823, size = 101, normalized size = 0.99 \begin{align*} -\frac{3 \, B \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{5} - 3 \, C \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{5} - 10 \, C \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{3} - 15 \, B \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) - 15 \, C \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )}{60 \, a^{3} d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)*(B*sec(d*x+c)+C*sec(d*x+c)^2)/(a+a*sec(d*x+c))^3,x, algorithm="giac")

[Out]

-1/60*(3*B*tan(1/2*d*x + 1/2*c)^5 - 3*C*tan(1/2*d*x + 1/2*c)^5 - 10*C*tan(1/2*d*x + 1/2*c)^3 - 15*B*tan(1/2*d*
x + 1/2*c) - 15*C*tan(1/2*d*x + 1/2*c))/(a^3*d)